soil amendments

OEFFA's 2020 conference is Feb 13-15 in Dayton, Ohio

It's time again for Ohio's largest sustainable food and farm conference. This year's OEFFA Conference will feature a larger trade show area, plus three days of workshop sessions and events featuring more than 70 topics and speakers. 

Among this year's educational sessions, the Ohio State Vegetable Production Systems Lab will host Do's and Don'ts of Getting More From Microbe-Containing Crop Biostimulants on Friday, February 14 from 12:45-1:45pm. Session leader Matt Kleinhenz invites producers to bring along their lunch and share experiences, concerns, and questions about these commonly used, but often difficult to evaluate, products.

Kleinhenz, an Extension specialist and professor with The Ohio State University’s Department of Horticulture and Crop Science, will lead discussion on the promise and challenge of using microbe-containing crop biostimulants in organic crop production, with an emphasis on vegetable production.

While many organic growers use these types of inputs, the benefits of doing so are rarely clear. Kleinhenz will discuss major reasons for these unclear responses. He will also provide tips for selecting, using, and evaluating biostimulant products effectively. The workshop will integrate hands-on demonstrations and how-to discussions, incorporating news from farms, research stations, and product manufacturers. Participant questions and observations will be blended into discussion on product-crop and product-product compatibility, preparation, application, handling, storage, and normal product effects on crops and yields. 

Kleinhenz and his lab have been working with microbe-containing biostimulants for several years, supported by the National Institute of Food and Agriculture USDA Organic Transitions Program and through the North Central Region SARE program. Those unable to attend the OEFFA conference session can read more about Ohio State work with Microbial-based Biostimulants (MBBS) and their Use in Commercial Vegetable Production by visiting the Vegetable Production Systems Laboratory website: https://u.osu.edu/vegprolab/research-areas/vegebiostimsferts/ 

Kleinhenz is one of 17 Ohio State presenters at this year's OEFFA conference. For more details about the OEFFA conference and schedule, visit www.oeffa.org/conference2020.php. Walk-in registration is available for Friday and Saturday's programming. The Exhibit Hall is open to the public on Thursday from 4:00-7:00 p.m. and Friday from 5:00-6:30. p.m. 

Ohio State dairy nutrition researcher Alex Tebbe (left) discusses lab analysis results with on-farm research partner Jeff Miller (right).

Sales of foliar fertilizers have skyrocketed in the last several years, particularly among organic dairy farmers. Foliar products are readily available, easy to store, and many products are approved for organic use and formulated to provide humates, microbiological products, micronutrients, and other popular treatments. Advocates of these products say they offer an environmentally friendly, efficient, and cost-effective way to apply fertilizers. Yet much of the recent research done on foliar feeding has been unable to reliably document benefits to production.

Louceline Fleuridor has spent the last two years studying foliar feeding as part of her Ohio State master’s degree program. She partnered with organic dairy farmers to measure the response of forage and soils to post-cutting foliar fertilization on 19 on-farm sites. As with previous studies in Ohio, Fleuridor found no consistent evidence of benefits from using foliar feeding products.

"In foliar feeding, you apply fertilizer through the leaves, which is contrary to the traditional knowledge that plants will absorb nutrients through their roots,” says Fleuridor, explaining that leaves' primary function is thought to be photosynthesis. "It raises some questions."

On Thursday, December 19, Fleuridor met with participating farmers and Ohio State specialists for a discussion of the research trials and results.

Partnering farmers began the meeting by sharing their experiences with foliar products. Wayne county dairy farmer Jeff Miller began experimenting with foliar feeding on one of his pastures five years ago. He decided to spray half of his pasture to see what would happen and because he couldn’t afford to spray the whole field. But when he noticed how much quicker his herd began to graze in the foliar fed area, he decided he couldn’t afford not to spray the whole field. Other farmers relayed similar experience, noting increases in crop yield, forage health, palatability, and harvested hay quality that coincided with the use of foliar feeding.

Yield gets a lot of attention in studies, but quality and palatability are also important, especially on dairy farms where forage is not the end product. Past studies have noted other advantages to foliar feeds, including decreased nutrient runoff, better absorption efficiency of micro- and macronutrients, reduced instance of disease, and, in a 2000 study on wheat, increased grain protein content.

"Forage quality is where we really expected to see changes, but we didn't," said Ohio State soil fertility specialist Steve Culman, who provided technical assistance on the project.

Fleuridor's study examined a variety of forage quality measurements, including in-field measurements for sugar content (Brix), as well as lab analysis for crude protein, stem:leaf ratio, fiber content, relative forage quality, net energy of lactation, and estimated milk/ton.

In addition to sharing individual and overall test results with the participating farmers, Fleuridor also spent time explaining how researchers use randomized plots and statistics to separate actual treatment differences from differences that happen randomly or from variations in the field. Fleuridor noted that there were some differences between the treatment and control in the studies, but the results were inconsistent and didn’t reveal a cohesive pattern of increased yield, plant health, or milk production for the sites in this study.

Culman cautions farmers to inform themselves before using foliar feeds. “If you’re looking at adding these products, look at the formulation and know what you’re getting. Foliar products tend to supply only a small amount of nutrients.”

Most of the farmers in the study plan to continue using foliar feeding, feeling that these products have caused improvements on their fields. They did note mixed results with some products and a need for additional labor. Several of the participants also stressed that other soil problems need to be fixed before turning attention to foliar feeds.

As for Fleuridor, she feels there are many factors that could have contributed to the mixed results in this study, including weather and soil conditions when the products were applied. She recommended that future studies use a consistent forage composition, and suggested a focus on clover may be advisable, based on farmer feedback.

This study was sponsored by The Ohio State University Paul C. and Edna H. Warner Grants for Sustainable Agriculture, Organic Valley FAFO (Farmers Advocating for Organic), and SoilBiotics. Organic Valley FAFO is currently accepting grant proposals for on-farm research projects. The deadline is February 15, 2020. Read more: https://www.organicvalley.coop/why-organic-valley/power-of-we/farmers-advocating-organics/

Ohio State researcher Louceline Fleuridor applying foliar feed treatments Ohio State researcher Louceline Fleuridor applied foliar feed treatments at spring green up and 10 days after each cutting. Applications were made in the mornings when temperatures were below 75 degrees F.

 

 

 

 

 

 

 

Posted In: dairy, soil amendments, research, field crops
Tags:
Comments: 0
Farmers and researchers exchange ideas at a reverse field day on soil balancing.

The Ohio State Soil Balancing Team is concluding a five-year project examining the beliefs, practices, and effects of soil balancing. Soil balancing involves the use of high calcium amendments to manipulate the ratio of calcium, magnesium, and potassium in the soil. For decades, proponents have claimed that the right balance of these cation nutrients will improve field conditions and yields, but none of these effects have been replicated by modern university research.

Through interviews, surveys, and literature reviews, the team gained a better understanding of why and how soil balancing is used by farmers and how it had been studied by researchers. The group found that while most researchers and university educators viewed soil balancing as an ineffective fertilization program; farmers and consultants who use soil balancing view it as a holistic method for improving soil health.

With input from a farmer advisory committee, the team designed long-term field experiments situated on organic farms and university research sites. The field trials found some evidence that changes in Ca:Mg ratios were associated with changes in soil structure and weed populations. However, the team was unable to document consistent effects on these characteristics, or on soil biology, crop quality, or yield.  

Based on the overall project findings, the Ohio State team recommends further investigation of how soil balancing’s effectiveness is impacted by specific site conditions such as cation exchange capacity (CEC), clay content, or management practices. Meanwhile, the team has issued the following recommendations for anyone using or considering soil balancing. 

Recommendations.

Soil test data is critical to making informed decisions about managing Ca:Mg ratios.

Watch your pH if using lime. Gypsum is a better choice to change your Ca saturation ratio without affecting pH, and it also provides sulfur.

Soils with a CEC below 10 meq/100 g may develop K deficiencies. In soils with a low holding capacity for cations, excess Ca can quickly lead to deficiencies of K, and possibly Mg. We did observe this in on-farm sites.

Consider economic factors. On soils with higher CEC, more time and amendments will be needed to increase the Ca:Mg ratio. Depending on the amount of change needed and the value of your crop, using soil balancing may be cost prohibitive.

Any time you try a new practice, monitor the results. If possible, try using the new practice on only part of your farm and compare it with a similarly managed area to see if the new technique is making a positive contribution over time.

Further Reading.

Additional Resources and Information are available at https://offer.osu.edu/soil-balancing/resource including summary reports, articles, and presentations. 

Posted In: soils, soil amendments
Tags:
Comments: 0
Dr. Christine Sprunger, Ohio State, shares data on the influence of management practices on soil health

Recordings are available from the 27th Annual Conservation Tillage and Technology Conference, held in Ada, Ohio, in March 2019. This two-day event brought together speakers in a variety of subject areas – many of which will be of interest to organic farmers. 

Videos are available on the conference’s You Tube Channel.

Here are some of the offerings:

Cover Crop Panel: Addressing Cover Crop Seed Issues
Sarah Noggle, OSU Extension, Paulding Co., Moderator; Jay and Ann Brandt, Walnut Creek Seeds; Don Grimes, Ohio Seed Improvement; Cody Beacom, Bird Hybrids

Protecting Identity Preserved Crops In The Field:
Managing Pollen Drift to minimize contamination of Non-GMO Corn
Dr. Peter Thomison, OSU Extension Corn Specialist

Enhancing Mycorrhizae And Metarhizium Fungus
Jim Hoorman, USDA-NRCS, Soil Health Specialist

What Management Practices Most Influence Soil Health In Corn Production?  
Dr. Christine Sprunger, OSU Assistant Professor, SENR

Enhancing Beneficial Insects With Pollinators
Dr. Stephanie Frischie, Xerces Society Agronomist / Native Plant Materials Specialist, Plymouth, WI

Can Weeds Be Managed With Calcium Amendments?  
Dr. Doug Doohan, OSU Professor, HCS, and Andrea Leiva Soto, OSU PhD Student, HCS

Elephant In The Room: Why Do So Many Farmers Practice 'Soil Balancing' Despite The Lack Of Scientific Evidence?
Dr. Doug Jackson-Smith, OSU Professor, SENR, and Dr. Caroline Brock, OSU Senior Research Associate, SENR

The Effects Of Manipulating Ca:Mg Ratios On Ohio Crop Yields And Soil Health
Dr. Steve Culman, OSU Assistant Professor, SENR, and Will Osterholz, USDA-ARS

Weather Pattern Effects On Conservation Practices
Dr. Aaron Wilson, OSU, Byrd Polar and Climate Research Center
https://cfaes.osu.edu/news/articles/farmers-need-gear-for-more-rain

Return On Investment With Using Gypsum
Dr. Subbu Kumarappan, OSU Associate Professor, ATI

Gypsum Is More Than Calcium: Summary Of Ohio Field Crop Responses To Sulfur
Louceline Fleuridor, OSU MS student, HCS

tomato in test plot

Use of compost and a mixed species hay crop are recommended.

For farmers transitioning from a conventional to an organic farming system, decisions made during the three-year transition period can influence important factors of future production, such as soil-borne pathogens, soil fertility, and soil structure. In this study, compost incorporation strongly affected physical, chemical, and biological soil health factors and, overall, the soil food web. Using a mix of perennial hay during the transition was most successful in reducing disease-causing pathogens in the soil. Highest available N and yields occurred in the plots using high tunnel vegetable production.

Materials and Methods

A three-year study was conducted in Wooster, Ohio, to evaluate four common rotational strategies used during transition from a conventional to an organic farming system. The four organic transition strategies evaluated were: 1) tilled fallow, 2) a single planting of mixed species perennial hay, 3) low intensity open field vegetable production, and 4) intensive vegetable production under a high tunnel.

Each transition strategy plot was split in half with 15,000 lbs./ac composted manure applied each year to one half.

At the year of certification, the fields were planted to tomato, with two smaller plots of soybean.

Key Findings

  • Compost treatment increased organic matter of soils in all treatments, lowered bulk density, and increased NO3-N, and microbial biomass-N.
  • The addition of compost boosted plant vigor for tomatoes for all transition strategies, but had an inconsistent effect on suppression of soil-borne diseases.
  • Transition cropping strategy was the main factor influencing bacterial community structure in the soil and the rhizosphere.
  • Bacterial communities involved in disease suppression were more abundant in soil previously cropped with hay compared to tilled fallow and low-intensity vegetable production. This was true for both tomato and soybean crops.
  • Overall, the mixed hay was the most effective in decreasing damping-off for both tomato and soybean crops.
  • Tomato yield during year four was much higher in the high tunnel plot. The hay treatment also showed better yield than the tilled fallow and open field vegetable production.

Why Researchers Think the Hay and High Tunnel Treatments Did Better

Disease suppression might happen in two ways. One involves specific action against pathogen populations. For example, brassicas (cauliflower, kale, turnip, radish, cabbage) suppress soil-borne diseases by exuding sulfur-rich substances that are toxic to many pathogenic soil organisms. And certain species of nematodes eat bacteria and fungi that cause plant diseases. Disease suppression can also occur from high competition for available resources. In both cases, the disease suppression is associated with the overall composition of the microbial community (bacteria, fungi) present in the soil and the rhizosphere.

The hay crop used in this experiment was a combination of Festulolium (a rye fescue hybrid) under-sown with alfalfa, red and white clover, timothy, chicory, orchardgrass, and plantain in equal proportions. Researchers concluded that the above-ground diversity of the hay mix supported an increase in beneficial soil organisms that compete or interfere with pathogens, thus, reducing incidence of disease in future crops.

The highest yields in this study were from the high tunnel plots. While some of the increase resulted from extending the growing season, soil analyses also found a higher level of available N in the high tunnel plots. Researchers think this was a result of maintaining the soil food web in a biologically-active state during the cold early spring months in northern Ohio. The monthly mean soil temperature inside the high tunnels was warmer by 35–41°C from January to May while from July to September it was marginally lower than the outside soil temperature. (Based on top 4 inches.)

For more information on using tunnels in vegetable production, visit the Vegetable Production Systems Laboratory’s Crop Enivronments page.


Prepared by Louceline Fleuridor and Cassandra Brown

Based on summaries of the following papers:

Benítez, MS; Baysal, F.; Rotenberg, D.; Kleinhenz, M.D.; Cardina, J.; Stinner, D.; Miller, S.A.; Gardner, B. B. 2007. Multiple statistical approaches of community fingerprint data reveal bacterial populations associated with general disease suppression arising from the application of different organic field management strategiesSoil Biology and Biochemistry Volume 39, Issue 9, September 2007, Pages 2289-2301

Briar, S.S., Miller, S.A., Stinner, D., Kleinhenz, M.D., & Grewal, P.S. 2011. Effect of different organic transition strategies for peri-urban vegetable production on soil properties, nematode community, and tomato yield. Applied Soil Ecology, 47, pgs 84-91.

Baysal, F; Benitez, MS; Kleinhenz, MD; Miller S.A.; Gardner B.B. 2008. Field management effects on damping-off and early season vigor of crops in a transitional organic cropping system. Phytopathology, Vol. 98, No. 5.